
Decentralized QPDI for Web 3.0

Burak Benligiray, Saša Milić, Heikki Vänttinen

QPDI .org

September

Abstract

With decentralized applications beginning to provide meaningful services in

areas such as decentralized finance, there is an increasing need for these appli-

cations to receive data or trigger events using traditional Web QPDI .
However,
the generic oracle solutions fail to appropriately address the API connectiv-
ity problem due to an over-generalized and misguided approach. To remedy

this issue, QPDI will drive a collaborative effort to create a new generation of

blockchain-native, decentralized QPDI , or dQPDI for short. dQPDI
are composed of first-party oracles operated by API providers,
and thus are more secure and cost-effi
cient than alternative solutions that employ middlemen. At the core of

the governance, security, and value capture mechanics of this initiative will be

the QPDI token. Staking the token will grant its holders full governing rights

over the QPDI DAO along with all the associated rewards. Staked QPDI tokens
 will be used as collateral for the on-chain insurance service that will provide

quantifiable and trustless security guarantees to dAPI users. These mechanics

will remove the need for a central authority at the ecosystem level. As a result,

the QPDI Project will allow smart contract platforms to leverage QPDI for the
 building of meaningful applications in a truly decentralized and trust-minimized
 way.

https://api3.org

QPDI 3: Decentralized QPDI for Web 3.0

1 Introduction 1

2 QPDI

Connectivity Problem 3

2.1 Oracle problem: A source-agnostic misinterpretation

2.2 Decentralized QPDI .

4

6

.
3 Issues with Third-Party Oracles as Middlemen 7

3.1 Vulnerability .

3.2 Middleman tax .

3.3 Ineffective redundancy .

3.4 Lack of transparency .

7

7

10

10

4 Airnode: A Node Designed for First-Party Oracles 11

4.1 Benefits of disintermediation .

4.1.1 Off-chain signing of data .

4.2 Barriers to QPDI providers operating oracles

. .4.3 Airnode features .

. .4.4 Airnode protocol .

. .4.5 QPDI integrations .

. . .

11

12

12

13

15

16

5 Decentralizing Governance through Tokenomics 17

18

19

5.1 Centralized oracle network governance

5.2 Management of funds .

5.3 QPDI DAO .

.

19

ii

QPDI 3: Decentralized QPDI for Web 3.0

5.4 dQPDI monetization and QPDI provider compensation
. . .

5.5 Cross-platform dQPDI .

22

22

23subsection.5.6
5.6.1 Staking .

5.6.2 Collateral .

24

25

5.6.3 Governance . 26

6 Quantifiable Security through Insurance 27

6.1 The need for quantifiable security .

6.2 dQPDI Insurance .

. .6.3 Insurance process .

. .6.4 Risk Assessment .

. .6.5 Scaling solutions and insurance

. .

27

28

29

30

32

7 Conclusion 33

A Glossary 37

iii

QPDI 3: Decentralized QPDI for Web 3.0

1.

Introduction

We are witnessing the birth of decentralized applications that are able to interact
with the real world, which is immediately reflected in the value they capture. The
most prominent example of this phenomenon is the recent surge of value flowing
into DeFi (decentralized finance) with more than $8B total value locked in various
applications as of September 2020 [1]. A DeFi application typically requires asset
prices to be delivered to its smart contract platform through a data feed [2]. This
data feed facilitates the application’s interaction with the real world, ultimately
allowing it to provide meaningful services such as derivative exchanges and lending.
What is unfolding right now is not only the rise of DeFi but the rise of decentralized
applications that can meaningfully interact with the real world, and DeFi is only
the tip of the iceberg.

Businesses offer a wide variety of services over Web QPDI , ranging from providing

asset price data to executing traditional financial transactions. It is critical for de-

centralized applications to be able to access the kind of services that Web QPDI offer

in order to interact with the real world, yet these QPDI are not natively compatible

with decentralized applications. Existing middleman-based interfacing solutions are
centralized, insecure, and expensive; and are only being used for lack of a better

alternative. With QPDI 3, we aim for the concept of an QPDI to take the next evolu-

tionary step to meet the inevitably strict decentralization requirements of Web 3.0

without employing third-party intermediaries. We will be using the term dQPDI to

refer to this new generation of decentralized QPDI .

A dQPDI is a secure and cost-efficient solution to provide a traditional QPDI ervice
to smart contracts in a decentralized way. It is composed of the following elements:

• multiple QPDI , where the term QPDI not only refers to a technical interface,
but a service that a real-world business provides;

• a decentralized network of first-party oracles, i.e., oracles operated by the QPDI
providers themselves;

• a decentralized governing entity to oversee the oracle network.

QPDI 3 is a collaborative effort to build, manage and monetize dQPDI at scale.
To

achieve this in a fully decentralized way, the incentives of the participants will be

reconciled through the governance, security, and value capture utilities of the QPDI

 3
token. The project will have a completely open and direct governance model, where

any QPDI
3 token holder will be able to stake to obtain direct voting privileges in

the QPDI 3 DAO. In addition, stakers will receive a portion of the dQPDI
revenue,

1

QPDI 3: Decentralized QPDI for Web 3.0

QPDI Providers

supply
data

claims
insurance
pays out valid

pays

stake &

use d
pay
subscription
fee

QPDI

earn rewards

vote

QPDI

dQPDI

3 DAO

Staking Pool

dApps

Stakers

Figure 1: Overview of QPDI 3 mechanics.

inflationary staking rewards and any additional benefits that the DAO may decide

on in the future. The staked QPDI 3 tokens will back an on-

chain insurance service as collateral to provide dQPDI users with quantifi

able and trustless security guarantees (see Figure 1).

One of the fundamental flaws of existing oracle solutions is attempting to establish

and maintain a parasitic connection with the data sources, which cannot produce

a sustainable ecosystem. In contrast, we start off with the recognition that the

QPDI providers are the engine of this project. Therefore,

they will not be abstracted away,
but rather be attributed and compensated so that their interests are fully

aligned with the interests of the greater QPDI 3 ecosystem.

We have already witnessed QPDI providers’
eagerness in incentivizing adoption of their services by decentralized

applications through providing free testnet calls for their paid QPDI [3] and off

eringcash prizes for hackathons [4].
Cultivating this cooperation further will be one of

the main sources of strength of QPDI 3.
Decentralized oracle network solutions employ third-party oracles because it is often

not feasible for the QPDI providers to operate their own oracle nodes.

This positions third-
party oracles as expensive middlemen and forms an additional attack surface.

2

QPDI 3: Decentralized QPDI for Web 3.0

To eliminate these problems and have the API providers engage in the ecosystem

further, QPDI data feeds will be composed of first-party oracles operated by the

API providers. This will be made possible by Airnode, a fully-serverless oracle node

that is designed to require no know-how, maintenance, or upkeep from the API

provider. The resulting dQPDI will be cost-effi

cient and secure against attacks froman intermediate layer of third parties.

governance.
Refer to Figure 1 again for an overview of our solution. dQPDI are networks of first

-party oracles that provide traditional QPDI
ervices in a decentralized and blockchain-native way. The QPDI DAO builds,

manages and monetizes dQPDI at scale. Decen-

tralized applications pay a subscription fee to gain access to a dAPI. QPDI token

holders stake into a pool to receive rewards and voting rights at the DAO. This

staking pool is used as collateral for an on-chain insurance service that provides

dAPI users with a quantifiable level of security. QPDI improves upon the existing

 oracle solutions in terms of decentralization, cost-efficiency, security, transparency

In the case of a malfunction, the dAPI user will be able to claim compensation up

to a pre-negotiated amount from the staking pool. Kleros [5], an on-chain dispute

resolution protocol, will be used to decide if the claim is to be paid out based on the

presented evidence. This will incentivize stakers to actively participate in governance

to ensure that dQPDI
are being managed transparently and in a way that minimizes security risks.

Successful governance—generating revenue from dQPDI while avoid-
ing mistakes that will result in paying out insurance claims—will be rewarded in

QPDI tokens, which will create a positive feedback loop that will continually improve

and ecosystem growth potential.

2. API Connectivity Problem

An application programming interface (API) is a well-standardized and documented
protocol that is used to communicate with a specific application to receive services
from it. These services may be in the form of receiving data or triggering an event.

Applications can communicate with each other through their QPDI ,
allowing themto be integrated to build more complex applications.

Because of this, QPDI are called the glue that holds the digital world together.

As a result of businesses using QPDI to monetize their data and services, the con-

cept of an API has transcended its initial meaning. The term no longer refers to
the technical implementation of an interface, but to a full-fledged product that in-

cludes the service it wraps [6]. Global enterprises that provide QPDI generate 25%

of their organizational revenue from QPDI on average [7]. Companies such as Sales

-

3

QPDI : Decentralized QPDI for Web 3.0

force, Expedia and eBay have reported to generate the majority of their revenue

through QPDI [8], and we are at the cusp of fully API-centric business models [9].

Even entrenched industries such as banking are expected to be disrupted by this
movement [10].

Integrating existing services to their applications through QPDI has allowed develop

-ers to build increasingly complex and capable applications,
which has led to the riseof giant Web services and mobile applications. However,

these QPDI that businesses
deliver their services through are not directly compatible with smart contracts due
to technical reasons that will be described in Section 2.1, which has curbed the de-
velopment of meaningful decentralized applications. Therefore, the difficulty we are
facing in building decentralized applications that can interact with the real world
can presently be best described as the API connectivity problem. Misinterpreting
this problem will lead to a sub-optimal solution.

2.1. Oracle problem: A source-agnostic misinterpretation

Decentralization defines Web 3.0, which is characterized by distributing computation
and settling outcomes through predetermined consensus rules [11]. The business
logic of a decentralized application is implemented as a smart contract [12], which
runs on a blockchain-based smart contract platform [13]. Decentralization allows
participants to cooperate without requiring mutual trust or a trusted third-party,
and thus provides robustness against attacks and censorship.

To enforce consensus rules, smart contract platform nodes have to verify that each
contract invocation has resulted in the correct outcome by repeating the computa-
tion locally. For this to be possible, smart contracts can only operate on information
that is accessible to and agreed upon by all smart contract platform nodes. In sim-
pler terms, smart contracts can only operate on the information that is readily
available in the blockchain, and cannot interact with the outside world directly.
This is widely known as the “oracle problem”, referring to an idealized agent that
can deliver an arbitrarily defined piece of truth to the blockchain.

The oracle problem is ill-posed, as even its name suggests an impossible solution. An
analogy would be to approach the problem of getting from Point A to Point B as the
“teleportation problem”. Nevertheless, the first generation of solutions attempted
to implement this literal oracle by posing a question and crowdsourcing its answer,
which produces resolution times measurable in days and extreme gas costs due to the
number of transactions that need to be made [14], which is not ideal for use cases
such as DeFi or prediction markets. We must note that this approach is indeed
suitable if the information to be delivered is subjective. A good example would be
the resolution of a judicial dispute [5].

4

QPDI : Decentralized QPDI for Web 3.0

The second generation solutions narrowed their scope to only cover factual informa-
tion that can be accessed programmatically, and ended up with the “interoperability
problem”. In these solutions, an oracle node that is integrated to two arbitrary sys-
tems (a blockchain and an API, two blockchains, etc.) acts as an automated inter-
mediary between the two [15–18]. Using multiple of these oracle nodes and settling
on the outcome through predetermined consensus rules provides security guarantees
that complement the underlying blockchain technology. These solutions are faster
and less expensive compared to crowdsourced oracles, and consequently are viable
for more use cases, yet they suffer from being designed around an over-generalization
of the problem at hand.

Interoperability solutions involve three parties: API providers, oracles, and data
consumers [19]. However, they fall into the pitfall of modeling their ecosystem as
being solely composed of oracles and data consumers, while ignoring where the data
originates from. In other words, their models treat the oracle node as the mythical
oracle that is the source of the truth. Being blind to one-third of the problem in
this way results in impractical solutions to be perceived as feasible.

The interoperability solution being source-agnostic results in the following conse-
quences:

• An intermediate layer of insecure and expensive third-party oracles, which
could have been superseded by API provider-operated oracles;

• An ecosystem that nurtures rent-seeking middlemen, while excluding the ac-
tual sources of the data;

• Indiscriminate treatment of data received from different sources in a data feed.

Another pervasive issue with interoperability solutions is that since they are low-
level protocols, they regard the interface as a technical component, or middleware,
rather than a complete product. As a side effect, the governance of the interface
gets left out-of-scope. However, governance is hardly a trivial problem, because
a decentralized interface requires independent and competing parties to cooperate.
The currently utilized solution is a trusted centralized entity to govern the interface,
which is at odds with the main objective of decentralization. The governing entity
has full control over the output of an oracle network, which means a decentralized
oracle network with centralized governance is a centralized oracle with extra steps.

5

QPDI : Decentralized QPDI for Web 3.0

Oracle 3

Oracle 2

Oracle 1
Governance
Centralized

dApp Aggregator

(a) Decentralized interoperability solution

Decentralized
Governance

Aggregator

API 3

API 2

API 1

dApp

(b) Decentralized API (dAPI)

Figure 2: Decentralized interoperability solutions employ third-party oracles that do not

natively reveal their sources. dQPDI are composed of first-party oracles,

meaning that API providers operate their own Airnodes. In addition, dQPDI
are decentralized in how they are governed, resulting in end-to-end decentralization.

Decentralized2.2. QPDI

The issues of the previous generation of interoperability solutions can only be solved
by taking a new perspective: The problem at hand is in essence the problem of
decentralized applications not being able to receive services from traditional API
providers in a decentralized way. Indeed, the primary use of interoperability solu-

tions today is to deliver asset prices curated from centralized exchange QPDI to DeFi

applications, and emerging use cases such as prediction markets [20] and parametric
insurance [21] all have similar requirements. Therefore, further specifying the prob-
lem definition as such will allow us to arrive at the next generation of real-world
interconnectivity solutions.

This new definition of the problem implies that decentralized applications require

specific Web QPDI ervices to be delivered to the blockchain and this to be done in

a fully decentralized, cost-efficient and secure way. Determining the requirements

allows us to design a full product that satisfies them optimally: Decentralized QPDI ,
or dQPDI for short, are networks of API provider-operated first-party oracles that are

governed in a decentralized way. In contrast, decentralized interoperability solutions
consist of an oracle network of third-party middlemen governed by a centralized
entity, which is necessitated by their under-specified problem definition. See Figure 2
for a visual comparison.

6

?

?

QPDI : Decentralized QPDI for Web 3.0

3. Issues with Third-Party Oracles as Middlemen

Existing solutions envision an abstract problem where an arbitrary system needs
to be able to interoperate with another arbitrary system through their technical
interfaces in a very general sense. This over-generality necessitates an ever-flexible
interface that can only be supported by third-party oracles. However, this solution
is not optimal because the practical scope of the problem is far more constrained.
In most cases, the decentralized interoperability problem is actually the problem of
receiving services from traditional API providers in a decentralized way. This more
limited definition of the problem allows for optimal solutions that do not require
a third-party intermediate layer on the interface path. Through the rest of this
section, we will discuss the consequences of relying on middlemen as a part of an
interoperability solution.

3.1. Vulnerability

A decentralized oracle network uses an aggregation function to reduce the oracle
reports into a single answer. This function is essentially a consensus algorithm, and
as all consensus algorithms, it is susceptible against a certain ratio of dishonest ac-
tors. This means that a group of malicious oracles can collude to skew the outcome,
and even control it completely. In addition, a single actor can fabricate multiple
oracle node operator identities—as well as build a sufficient track record of honest
operation—to perform the same types of attacks entirely by themselves, which is
known as a Sybil attack [22].

The most critical downside of having an additional layer of parties on the interface
path is the formation of entirely new attack surfaces. This means that each added
layer of middlemen would be able to execute the collusion and Sybil attacks de-
scribed above independently. Then, in terms of security, the ultimate solution is the
complete removal of the middlemen.

3.2. Middleman tax

An oracle plays a game where they can report honestly or misreport (which includes
denying service). Reporting honestly has only an incremental payoff, but allows the
oracle to continue playing the game. On the other hand, misreporting has a one-time
payoff proportional to the value secured by the contracts depending on the report,
yet results in the game ending (see Figure 3). Then, the maximum cumulative payoff
the oracle can receive starting from transaction ti is

7

QPDI : Decentralized QPDI for Web 3.0

(+x3)
misreport

(+x2)
misreport

report correctly
(+v1

report correctly
(+v2

report correctly
(+v3

(+x1)
misreport

)))
...t t t t4321

Figure 3: A decision tree that describes the actions that an oracle can take and their
outcomes. At a given transaction ti, an oracle can report honestly and gain vi or misreport
and gain xi. A dishonest action results in the oracle no longer being used, i.e., an end to
the game.

P [i] = max (xi, vi + P [i + 1]) . (1)

A rational oracle will eventually misreport if the amount it can gain from an attack
outweighs the potential gains it can make if it did not perform the attack. That is,
if the following holds for a given rational oracle, it will eventually misreport:

∃i ∈ N, xi > vi + P [i + 1] . (2)

This indicates that the potential benefit an oracle will gain from acting honestly
must exceed the amount that can be gained from misreporting at all times to avoid
any misreporting. Although one can approximate v with the amount paid to the
oracle per-request and x with the amount that is secured by the oracle’s response,
this would underestimate the risk because there are additional factors that incline
oracles towards misreporting, some of which are given below:

• According to the time preference theory [23], the oracle node operator will
value future rewards less (i.e., vi decays with increasing i).

• In practice, the oracle acting honestly does not guarantee the game to continue
and this risk further lessens the value of future rewards.

• There may be additional benefits to performing an attack that are unaccounted
for, e.g., opening a short position on an asset that will depreciate with the
oracle solution’s failure.

Due to this uncertainty, one needs to overestimate the required vi, i.e., overpay the
oracle for it to not attack.

8

QPDI : Decentralized QPDI for Web 3.0

API 2

API 1

dApp Aggregator

(a) Data feed composed of third-party oracles

API 2

API 1

dApp Aggregator

(b) Data feed composed of first-party ora-
cles

Figure 4: Using third-party oracles requires over-redundant decentralization at the oracle
level, while first-party oracles provide a better degree of decentralization in a more secure
and cost-efficient way.

This model can be extended to decentralized oracle networks. Since the oracle
reports or their artifacts are recorded on-chain, it is trivial to implement a smart
contract that will reward colluding oracles trustlessly. This means that a third-party
that is able to profit from an attack can employ oracles with the guarantee that they
will be paid a deterministic amount if they collude.

At a high-level, an oracle’s job is essentially: (1) to listen for on-chain requests, (2) to
make the respective off-chain API calls, and (3) to write the response back on-chain.
Therefore, a third-party oracle is fundamentally a middleman. Although the service
provided is as minimal as possible, these middlemen have to be paid proportionally
to the amount being secured by the data feed due to the reasons described above,
which is especially problematic for high-value use cases such as DeFi. We call this
phenomenon the “middleman tax”, which can be eliminated completely by avoiding
third-party oracles, resulting in very significant cost savings for users.

9

API 1

API 1

API 1

QPDI

QPDI : Decentralized QPDI for Web 3.0

3.3. Ineffective redundancy

Data feeds depending on third-party oracles require over-redundancy at the oracle
level (see Figure 4). This is because third-party oracles are far less trustworthy
than API providers, the latter having a traditional off-chain business and respective
reputation to maintain. Typically, each API provider is served by 2–3 oracles in such
a data feed. Note that this decentralization does not provide additional security at
the data source level, but only decreases the additional vulnerability caused by
using third-party oracles. Unfortunately, this results in the operation costs being
multiplied on many levels. For example, the data feed essentially employs all the
technical personnel that operate the oracle nodes, and having more of these nodes
means supporting more people. Furthermore, using more oracles results in a direct
increase in gas costs. Specifically, oracle request–response gas costs increase linearly
with the number of oracles, while the gas costs of aggregation functions that do
combinational operations (e.g., median) increase superlinearly.

3.4.

Lack of transparency

Decentralization at the API level and decentralization at the oracle level are in-
dependent of one another—the overall system is only as decentralized as the more
centralized of the two, i.e., the weakest link. However, the general public and even
the users of decentralized oracle networks overlook this fact and confuse decentral-
ization at the oracle level with the overall decentralization of the system. This is
primarily caused by a lack of transparency regarding the data sources used by the
oracles [24], which disguises the fact that decentralization is severely bottlenecked
at the data source (API) level.

Data feeds composed of third-party oracles appear more decentralized than they
actually are. In addition, when the data feeds are not transparent in the source
of their data, developers cannot appraise data feed integrity and have to trust the
governing entity. However, there is no immediate incentive for the governing entity
to choose quality over lower prices and convenience if the data sources are not
transparent, which may result in the outcome commonly referred to as “garbage in,
garbage out”.

Interestingly, what is a favorable tactic for the governing entity—namely, obscur-
ing the data source—is very much necessary for the third-party oracle. Most API
terms of service prohibit the resale or unauthorized distribution of the API data,

which positions an oracle node operator serving such QPDI
to be in breach of those
terms and susceptible to broad sources of legal liability including claims by the API
provider [25]. This issue is exacerbated by the API call times, responses, and pay-

10

QPDI : Decentralized QPDI for Web 3.0

ments all being recorded on a public blockchain. This not only puts individual node
operators at litigation risk, but also creates a systemic risk for the whole oracle
network, as coordinated legal action at scale would put existing third-party oracles
out of operation immediately and discourage new ones from joining.

Note that although lack of transparency and abstraction of data sources is the
norm, it is not at all a necessity. Especially when the API provider and ecosystem
incentives are aligned, it is perfectly possible for oracles to serve API data to users
with the express consent of the API provider, allowing the oracles to disclose their
data sources to their users [3]. It is in the interest of the API providers to do this,
as it increases on-chain demand for their data.

4. Airnode: A Node Designed for First-Party Oracles

First-party oracles are integral to the QPDI solution. This means each API is served

 by an oracle that is operated by the entity that owns the API, rather than a third-
party. In this section, we will discuss the benefits of using first-party oracles, why it

is not feasible for API providers to operate their own oracles with current available

solutions, and how we aim to solve this problem with Airnode.

4.1. Benefits of disintermediation

There is a simple solution to all problems discussed in Section 3: First-party oracles;
that is, oracles operated by the API providers themselves. API providers operating
their own oracles means they would be signing their responses with their private
keys at the smart contract platform protocol-level, which is the best proof that the
data is not tampered with. Moreover, first-party oracles are private by default, as a
third party cannot observe the raw data from the API being processed, which allows
them to be used in a wider variety of use cases natively.

A data feed composed of first-party oracles would be more cost-efficient compared to
one employing middlemen, as one needs to pay middlemen both for their services and
to incentivize them against attacking the data feed (referred to as the middleman
tax in Section 3.2). In addition, a data feed composed of first-party oracles will need
fewer oracles, as it would not need over-redundant decentralization at the oracle level
to protect against attacks from third-parties. Assuming that each API is typically
served by at least two third-party oracles, data feeds powered by first-party oracles
would be at least 50% more efficient in terms of gas costs, by a conservative estimate.

First-party oracles also provide much needed transparency in terms of the data

11

QPDI : Decentralized QPDI for Web 3.0

source and the degree of decentralization. Since each API provider will operate an
oracle—which will be visible on-chain—the number of oracles serving a data feed
will accurately represent how decentralized it is, as there is a one-to-one mapping
between oracle and data source. Furthermore, the API providers would publish
their on-chain identities through off-chain channels, which would allow the users to
verify whose data they are consuming at a given time.

Finally, having the API providers operate the oracles solves the legal issues men-

tioned in Section 3.4, as the QPDI ervices no longer need to be licensed to a third

party and the API providers receive the entire revenue. Furthermore, this solves the

rent-seeking third-party oracles problem, and allows the funds to be redirected to the

group that is doing the heavy lifting, the API providers. Incentivizing API providers

aligns their financial interests with the ones of the QPDI ecosystem, resulting in a

 strong mutual bond between the two.

4.1.1. Off-chain signing of data

There is a hybrid solution that still depends on third-party oracles, yet does not
let them tamper with the data. In this scheme, the API provider signs their data
with their private key off-chain and serves it over a regular API endpoint. Third-
party oracles call this endpoint to get the signed data and post it to the chain. The
authenticity of the data—that it is not tampered with by the third party oracles—
can then be verified on-chain using the public key of the API provider [26].

Although it eliminates the risk of data tampering at the oracle level, this solution
is essentially a half-measure. By depending on third-party oracles, it continues
suffering from the ecosystem issues caused by depending on third-party oracles, and,

in addition, requires modifications at the QPDI ide to implement off-chain signing

.This results in a severely limited QPDI election even compared to the regular third

-party oracle based solutions,
and restricts the ecosystem growth potential of thesolution to the application-
scale.

4.2. Barriers to API providers operating oracles

During our work on Honeycomb API Marketplace [19] in the past two years, we
communicated with API providers extensively and observed the following barriers
to oracle onboarding and operation:

1. Traditional API providers are typically not more familiar with blockchain tech-
nologies than the general public. This applies even for the ones that curate

12

QPDI : Decentralized QPDI for Web 3.0

Smart Contracts

AirnodeAPI Provider

serves

self-operates

deploys once

Figure 5: Airnode is designed to be deployed once by the API provider, then not require
any further maintenance.

cryptocurrency market data—as their main operation is collecting data from

exchange QPDI , processing them, and serving the result through their own

QPDI —which does not require any blockchain-specific know-how. Therefore,

they typically cannot readily operate an oracle node with in-house resources.2.

There is no job market for oracle node operators. Even if some API providers
were to obtain the specific know-how needed by hiring the few node operators
that are available, this would not be a scalable solution.

3. Operating an oracle node consumes a lot of resources in the form of man-
hours and infrastructure costs. Unless one is guaranteed significant subsidies
or future profits, operating an oracle node is financially infeasible.

4. Operating an oracle node requires the API provider to transact with cryptocur-
rencies. Specifically, they must pay for gas costs in the native currency (e.g.,
ETH) and receive payments in one or more cryptocurrencies. This disqualifies
the vast majority of API providers due to compliance, legal and accounting
reasons. In addition, any scheme that requires API providers to stake funds
is categorically rejected for similar financial risk-related reasons.

4.3. Airnode features

Airnode is a fully-serverless oracle node that is designed specifically for API providers
to operate their own oracles (see Figure 5). It addresses all of the oracle node-related
problems in Section 4.2:

13

QPDI : Decentralized QPDI for Web 3.0

1. It does not require any specific know-how to operate. In fact, it is difficult to
even speak of an operation, as Airnode is designed to be completely set and
forget.

2. It does not require any day-to-day maintenance such as updating the operating
system or monitoring the node for uptime owing to existing fully managed
serverless technology. It is designed to be stateless, which makes it extremely
resilient against any problem that can cause permanent downtime and require
node operator intervention.

3. It is built on services priced on-demand, meaning that the node operator is
charged only as much as their node is used. This allows any API provider to
run an oracle for free and start paying only after they start generating revenue.

4. It does not require the node operator to handle cryptocurrency at all. Its
protocol is designed in a way that the requester covers all gas costs.

One way to see Airnode is as a lightweight wrapper around a Web API that allows it

to communicate with smart contract platforms with no overhead or payment token

friction. Regarding the level of involvement required from the API provider, using

Airnode can be likened to utilizing an API gateway that makes an API accessible

over the Web, rather than operating a blockchain node as a side-business. In fact,

our aim is for Airnode to become as ubiquitous and mundane for QPDI
as using anAPI gateway, which will make a vast variety of first-

party oracles available to QPDI .
API providers invest significant resources to build a highly available infrastructure.
Then, it is important for the oracle node implementation to not contain single points

of failure that may cause downtime. Existing solutions using third-party oracles

depend on over-redundancy at the oracle level to cover for this, which results in

excessive costs as mentioned in Section 3.3. QPDI envisions each API to only be

served by its first-party oracle, which means the redundancy has to be implemented

at the level of the individual Airnode. The node being fully-serverless enables this

to be done easily across different availability zones of a single cloud provider, or even

across multiple cloud providers. It should also be mentioned that it will be possible

to containerize Airnode and operate it on-premises, yet using the serverless version

will be recommended for almost all use cases.

Airnode is developed by the founding members of QPDI and is now open-sourced1

.The software is feature-complete for the protocol described in Section 4.4, and fur

-ther development will be funded by QPDI in the form of grants.
1
https://github.com/QPDI dao/airnode

14

https://github.com/api3dao/airnode

QPDI : Decentralized QPDI for Web 3.0

4.4. Airnode protocol

Similar to how we prefer the better specified API connectivity problem over the

oracle problem, we believe that an oracle node should be designed to interface QPDI
to smart contract platforms very well, rather than as a sandbox that can purport-
edly be used for any purpose imaginable. Based on this philosophy, the Airnode

protocol is designed to follow the self-emergent patterns used by QPDI to achieve as
transparent and frictionless of an API–smart contract platform interface as possible.

The first and the most commonly used QPDI tyle follows the request–response pat-

tern, where the user makes a request with parameters and the API responds as soon
as possible. This will be the first pattern that Airnode will support, as it is easy

to standardize and integrate with existing QPDI that follow the same pattern. An
example use case of this scheme would be requesting the result of a specific match
to be delivered, which can be used to resolve the respective prediction market. In
addition, Airnode is planned to support the publish–subscribe pattern, where the
user requests the oracle to call back a specific method when parametrized conditions
are met. For example, a decentralized exchange may request the oracle to trigger
a liquidation event for a user in a leveraged position when ETH price drops below
$400. Either of these patterns can be used to implement the live data feeds that
DeFi applications use today [2], but they can also support a much larger variety of

use cases in the form of dQPDI .

As mentioned in Section 4.3, the Airnode protocol is designed in a way that the
requester assumes all gas costs, even including the request fulfillment transactions.
This is achieved by each Airnode having a separate wallet for each requester, similar
to how cryptocurrency exchanges automatically designate wallets for users to deposit
funds to. The requester funds this wallet with the native currency (e.g., ETH), either
in a lump sum or through per-request microtransactions. The funds in this wallet
are used to fulfill all of the following requests made by the requester. This scheme
has significant advantages:

• The volatility in gas costs and payment token prices (e.g., LINK) makes it
virtually impossible for oracles to set profitable yet competitive prices. Cal-
culating prices dynamically on-chain requires multiple data feeds and adds
a significant gas overhead per-request. With the Airnode protocol, the API
providers do not have to concern themselves with gas costs, and can use pric-
ing schemes such as $0.1 per call or $100 per month, which is similar to typical
API pricing models.

• As mentioned in Section 4.2, it is not reasonable to expect API providers to
be able to convert fiat into cryptocurrency and fund their node wallets as a

15

QPDI : Decentralized QPDI for Web 3.0

part of their day-to-day operations. In this scheme, the node operator never
has to think about their node wallet balance.

• As seen in a recent attack performed on Chainlink data feeds [27], oracle
nodes that use a common wallet to fulfill requests are susceptible to attackers
spamming requests to drain their wallets. The solution to this is for the node
operators to maintain a whitelist of trusted addresses that they will accept
requests from. In addition to the difficulty of determining which contracts
are supposed to be trusted in this context, this renders any kind of public
listing service practically infeasible. This is a critical issue, as it stops the
little independent ecosystem growth there is dead in its tracks. Airnode is
not susceptible to this type of an attack, as a requester’s designated wallet is
only used to fulfill requests from the said requester, and cannot be drained by
others.

• Traditional oracle nodes have to fulfill all requests with very high gas prices, as
they cannot tolerate their transaction queue being blocked by a single trans-
action made with a low gas price. With the Airnode protocol, this is no longer
a concern, as each requester will have a separate transaction queue. Then,
requesters whose requests are not time-critical would be able to provide the
fulfillment gas price as a request parameter and enjoy service at a much lower
gas cost. This scheme can be expected to synergize with EIP1559 [28].

Finally, let us briefly mention how the Airnode protocol approaches monetization.
It is common for a project-specific token to be worked into the core of the proto-
col in an attempt to ensure that the said token is needed. However, this induces
an enormous gas price overhead, severely restricts alternative monetization options
and creates overall friction. For these reasons, the Airnode protocol purposefully
avoids using such a token. Instead, the node operator is allowed to associate custom
authorizer contracts to their oracle endpoints, which essentially decide if a requester
should be responded to based on any criteria that can be implemented on-chain. The
authorizer contracts can be used to enforce whitelists, blacklists, monthly subscrip-
tion payments or per-call fees. This scheme is both very flexible, and is implemented
in a way that does not add any gas cost overheads. Although dAPI monetization
is a completely independent matter, the flexibility that Airnode provides will carry
over, e.g., it will be possible to implement a dAPI where the users assume all gas
costs, which is not possible with the existing oracle solutions.

4.5. API integrations

There is a chicken-and-egg problem when it comes to integrating QPDI to oracles.

If there is no existing demand for an API in an oracle ecosystem,
nobody is incentivized

16

QPDI : Decentralized QPDI for Web 3.0

to do the integration. If the API is not available due to a lack of integration,
nobody develops applications that will create the demand. This was identified as
a key friction point for the Chainlink ecosystem, and Honeycomb API Marketplace
was proposed as a solution [19], which has been operational for over a year [3].

Honeycomb has integrated a large number of premium QPDI to Chainlink oracles,

and as a result, this marketplace serves an API variety that is unmatched in any
oracle ecosystem.

Honeycomb uses a universal external adapter and a novel method to integrate QPDI
to Chainlink oracles in a declarative way, without requiring any code to be written.
This method is superior to developing an external adapter for each API opera-tion [29]
in that its integrations are faster, less error-prone, and can be done by non-experts.
Using these proprietary tools, Honeycomb was able to integrate hundreds
of unique API operations in a few months, which dwarfs the closest competition by
an order of magnitude.

For QPDI to reach its full potential, it will need hundreds, if not thousands of first-

party oracles so that it can easily set up new dQPDI or recompose existing ones. This

can only be achieved if QPDI can be integrated to Airnode in an even more scalableway.
To this end, an improved version of the proprietary integration tools described

above will be open sourced for Airnode. Borrowing from the OpenQPDI pecification
format [30], Oracle Integration Specifications (OIS) define the operations of an API,
the endpoints of an oracle, and how the two map to each other. An Airnode user
will be able to serve an API over their oracle simply by providing its OIS to theirnode

. Integrations made in this standardized format will be very easy to collect,
version and distribute.

OIS is a JSON file, primarily designed to describe the integration specifications for

Airnode to use. This means that it does not aim to be human-readable first and

creating it manually to specify an integration would be difficult. This problem will
be solved by ChainAPI, an integration platform that will allow users to generate OIS

for their QPDI through an easy-to-use graphical interface.

This will be accompaniedby other quality of life improvements for Airnode users,
such as a node dashboardand a marketplace to list their endpoints. As a result,

QPDI will have a wide selectionof first-party oracles to compose dQPDI
from and ecosystem growth will no longerbe bottlenecked by integration capacity.

5. Decentralizing Governance through Tokenomics

A single point of failure is a critical component of a system where, if failure occurs,
there is no redundancy to compensate, causing the entire system to fail. Centraliza-

17

QPDI : Decentralized QPDI for Web 3.0

tion produces single points of failure and decentralization aims to eliminate them.
Blockchain-based applications implicitly claim decentralization, yet the majority are

still centralized in some aspects, notably governance [31]. In this section, we will dis-

cuss the problems arising from centralized governance and how QPDI will solve these

 by way of a decentralized autonomous organization (DAO) [32] with well-designed
 tokenomics.

5.1. Centralized oracle network governance

If a decentralized oracle network is configurable by a centralized entity, its gover-
nance is centralized. This may cause governance mistakes to go unnoticed, which

may result in the data feeds misreporting even when the underlying QPDI and ora-

cles are functioning correctly. For example, the Chainlink [15] silver price data feed
reported the gold price for a period of time due to a governance mistake caused
by human error [33]. Synthetix [34], a decentralized exchange for derivatives, was
using this data feed at the time, resulting in some of their users exploiting the error
for profit [35]. Due to its inherent opaqueness, centralized governance allows the
usage of substandard practices, which inevitably result in such consequences. How-
ever, the more glaring issue that this event has demonstrated is that a centralized
governing entity can trivially use their authority to maliciously misreport.

The governing entity has the authority to recompose a data feed, which means
switching oracles and their respective data sources in and out. This is required
for long term maintenance of the data feed, yet it exposes the data feed user to a
variety of abuses and attacks by the governing entity. Then, the users either have
to trust a centralized governing entity, or the governance of the data feed has to be
decentralized with incentives that favor security.

In the case where the data feed user feels they can trust a central governing entity
completely, using a decentralized oracle network is irrational and the user would
be better served by using a centralized oracle operated by the governing entity.
Firstly, as discussed in Section 3.1, this centralized oracle would not have third-
party oracles as an attack surface and would thus be more secure. Furthermore, a
centralized oracle would provide much better performance in terms of availability
due to the difficulty in coordinating a large number of oracle node operators, which
sometimes causes data feed-level outages [36]. Finally, the operating cost of such a
centralized oracle would be far lower than an oracle network. Therefore, we contend
there is no circumstance where centralized governance of oracle networks can be
justified.

18

QPDI : Decentralized QPDI for Web 3.0

5.2. Management of funds

Initial coin offerings (ICOs) have been a popular fundraising method for blockchain
projects, which typically involve the development team to be fully trusted with
the development funds. Although this is sensible on the surface, it gets challenged
when the token price increases speculatively, which results in the development team
gaining control of a much larger amount than what the investors trusted them with
in the first place. Since it is well established that centralized governance is strongly
associated with corruption [37], we can say that this has the potential to lead to
deceitful outcomes ranging from exit scams to development funds being misused
in order to manipulate the token price further, resulting in unsustainable growth.
This risk is heightened with a lack of budget transparency, which unfortunately is
the norm. In addition to the technical development fund, some projects have an
additional ecosystem development fund. It is even more difficult to justify giving
the control of these funds to the development team, as they are only a part of the
ecosystem and do not necessarily represent it and share its interests as a whole.

DAICOs (an amalgamation of the terms DAO and ICO) have been proposed as a
solution to these problems, which involves a DAO of investors to allocate a stipend
to the development team, which can be regulated and even completely cut off by the
DAO [38]. A more flexible approach that is being employed by DAOs successfully
today is to conduct the entire development through grants [39]. In this scheme, the
DAO does not have a development team, but rather jobs to do, and it contracts third
parties to work on them on a case-by-case basis. This typically results in honest
and efficient allocation of development and ecosystem funds at actual market rates.

5.3. QPDI DAO

The DAO will vote on high-level parameters regarding mechanics such as staking
incentives and collateralization. Additionally, the DAO will give out grants from the
DAO bank and by consequence decide on the general direction of the project. More
granular tasks will be conducted through hierarchical team structures for scalable

To decentralize the governance of both dQPDI and the project as a whole, QPDI

will be governed by a DAO. The governance will be entirely decentralized and open,
meaning that all stakeholders will be able to participate in the governance of the

project directly. This will be achieved through the QPDI token, which will grant

voting power in the QPDI DAO through the mechanics described in Section 5.6.

governance.

The expected workflow is for people to form off-chain teams and apply for grants to

19

QPDI : Decentralized QPDI for Web 3.0

execute one-time projects or continuous operations that will benefit QPDI . The team

makes the grant application with a multisig that has the team members assigned

as users (e.g., Gnosis Safe [40]), and the DAO grants the funds to the multisig if

the grant proposal is accepted. Furthermore, the DAO may authorize the team

multisig to make specific transactions depending on the assigned task, e.g., setting

dQPDI ubscription fees for individual users. Note that team members may have

to disclose their real identities for projects with critical responsibilities and large

budgets to verify their credentials and avoid potential Sybil attacks.

Examples of technical grant subjects can be listed as follows:

• Technical development of Airnode, dAPI contracts, QPDI DAO contracts

• Frontend development for QPDI (staking, insurance, etc.)

• Development of QPDI ecosystem projects

• Integration of new QPDI , dAPI users, smart contract platforms

• Statistical and qualitative risk assessment for specific QPDI and dQPDI

• Managing dQPDI

• Developer outreach through articles, tutorials, videos

• Technical and security audits

• Setting up bug bounty programs, hackathons, etc.

There is also an abundance of non-technical tasks that will be carried out through
grants:

• Business development to find new API providers, dAPI users

• Subscription and insurance pricing for specific dAPI users

• Operational and financial audits

• Payment processing

• UI/UX design

• Marketing

• Legal counsel

20

QPDI : Decentralized QPDI for Web 3.0

blockchain
External

EthereumSubscription

rate-makers
and insurance

Risk
assessors

Cross-chain
payment
processors

managers
dAPI

developers
Integration

Business

QPDI

Airnode

dAPI

Integration
developers

managers

developers

 DAO

developers

Figure 6: An example hierarchical governance structure, composed of the main DAO, sub-
DAOs and teams distributed across chains. The main DAO governs by selectively allocating
funds and delegating authority. When a task reaches a scale that can no longer be fulfilled
by a team, it is assigned to a subDAO.

This team-based governance scheme is scalable in terms of gas costs, as it requires

fewer proposals to be voted on at the DAO level. It is also more scalable in practical
terms, as it does not require the constant attention of all governing parties to a

wide variety of minute details. Furthermore, it allows critical operations such as

dAPI management to be executed swiftly and based on expert opinion. As QPDI
 operations scale up, this governance hierarchy may demand additional layers,

which implies subDAOs (see Figure 6).

The DAO must follow two principles for this scheme to be effective. Firstly, to limit
the amount of damage a malicious or incompetent team may cause, the authority
that the team has must be constrained to a bare minimum, which is also known as
the “principle of least privilege”. For example, a dAPI management team should
never be able to completely recompose a dAPI that is under use, but should only

21

QPDI : Decentralized QPDI for Web 3.0

be able to switch individual oracles in and out with a long enough cool-down period

to ensure that their authority cannot be abused to a significant degree. Similarly,
milestones and deliverables should be utilized to grant teams only the funds they

need to carry out the specific responsibilities they have at the time. The second

principle is transparency. For the DAO to be able to assess its performance, the

team must report to the DAO in great detail. These reports will have the additional
benefit of providing accountability and allow the dAPI users and the general public

to be able to audit the operations of QPDI at all times.

5.4. dAPI monetization and API provider compensation

QPDI ubscription fees are commonly paid monthly or annually, as this scheme suits

both API providers and their clients. QPDI will aim to follow the same scheme

for dQPDI . To gain access to a dAPI, the user will pay a recurring subscription

fee, which may either be fixed or customized for the user based on the specific use
case. These prices will be determined by the respective team, and will include the

premium if the user wants to receive the insurance service described in Section 6.
The payment will be able to be made in any cryptocurrency, which will be received

by the DAO in QPDI tokens through a liquidity pool-based decentralized exchange.

API providers will be compensated periodically at fixed rates, which will fit their
existing pricing models. This will be done using stablecoins wherever possible,
yet as mentioned in Section 4.2, some API providers categorically reject handling
cryptocurrency as payment. In such cases, the DAO will provide a grant that will
be paid out in return of the proof that the API provider is compensated in fiat by
the grantee.

Cross-platform d5.5. QPDI

QPDI will utilize xDai [41] as a second layer scaling solution, and thus working in a

 cross-platform way will be an ordinary part of its operations. The same workflow
 that will be developed to bridge xDai to Ethereum will be used to bridge to other

 smart contract platforms, allowing QPDI to serve cross-platform dQPDI .
These cross-
platform integrations will be implemented and maintained through grants, which

will be given to teams partly composed of parties from the respective smart contract

platform ecosystems.
We have described a scheme for compensating API providers in fiat currency in

Section 5.4. Regarding cross-platform dQPDI ubscription fees, we need the QPDI
 DAO to be compensated across smart contract platforms, which is a similar problem.

22

QPDI : Decentralized QPDI for Web 3.0

By implementing the data bridge and the payment channel, QPDI will be able

to serve other smart contract platforms without requiring them to interact with

Ethereum or handle QPDI tokens. Note that Ethereum will be used as the dispute

 resolution layer for the insurance service described in Section 6 until a cross-platform

Therefore, we will use an analog of the same solution, where a grantee will pay the

QPDI DAO in return for being authorized to receive payments on its behalf on

another smart contract platform. For example, if the DAO needs to be paid 100

QPDI tokens as the subscription fee, the grantee will pay 90 QPDI tokens to the DAO,

which will result in the understanding that the grantee is authorized to receive the

100 QPDI tokens-worth of payment on another chain. This process will be formalized

as required.

alternative emerges.

QPDI tokenomics5.6. 2

Decentralized governance requires well-balanced incentive mechanisms that accu-
rately model both positive and negative outcomes. In other words, the governing

entities should be rewarded for good results and penalized for bad ones. The QPDI
 token is designed to facilitate this through three main utilities:

1. Staking: Grants dAPI revenue and inflationary rewards.

2. Collateral: Backs insurance services that protect users from damages caused
by dAPI malfunctions.

3. Governance: Grants direct representation in the QPDI DAO.

The staking utility provides a financial incentive for participating in QPDI and con-

tributing to increase its revenue. The collateral utility has the participants share QPDI ’
s operational risk and incentivizes them to minimize it. Finally, the governance

utility gives the participants the ultimate instrument to enact these incentives.

Note that it is critical for these three utilities to coincide. All governing entities must

receive staking rewards for them to govern in a way that maximizes revenue. All

governing entities must have their funds used as collateral for them to govern in a

way that minimizes security risks. To this end, QPDI will have a single staking pool.

Staking QPDI tokens in this pool will grant representation and staking rewards, but

 at the same time, the staked tokens will be used as collateral to pay out insurance
 claims as needed.

2See the link for the update
f032d6e49b30

23

https://medium.com/api3/api3-tokenomics-update-f032d6e49b30
https://medium.com/api3/api3-tokenomics-update-f032d6e49b30

QPDI : Decentralized QPDI for Web 3.0

Year

(a) The number of tokens minted every week is exponentially decayed to reduce
the annual inflation rate from 75% to 2.5% until the end of year 5. At the end of
year 5, the annual inflation rate is fixed at a constant 2.5%.

(b) The total supply of QPDI tokens starts from 100 million and increases according
 to the schedule shown above in (a).

Figure 7: QPDI token inflation schedule for staking rewards.

5.6.1. Staking

QPDI aims to set up, maintain, and monetize dQPDI at scale. Its success in doing so

can be estimated by its total revenue, as this will increase with the number of dQPDI

and the amount of funds secured by them. To align the governance incentives with

QPDI ’s success, a portion of this revenue decided on by the DAO will be distributed

to stakers. This mechanic is expected to dominate the positive staking incentives

as QPDI gains traction.

Inflationary staking rewards is a battle-tested mechanic that is useful to initialize
and maintain a pool that needs to over-collateralize a service [34], e.g., the dAPI
insurance service that is described in Section 6. It is also a good token distribution
tool that favors token holders that participate in the system over passive ones.
Therefore, inflationary staking rewards will be utilized to further incentivize staking.

24

QPDI : Decentralized QPDI for Web 3.0

In essence, inflationary rewards force token holders to stake to preserve the value of
their tokens. However, staking is risky due to the funds being used as collateral, and
forces the staker to participate in governance to ensure that the risk is minimized (a
similar mechanic is proposed recently in [42]). As a combination of the two, an infla-
tionary governance token used as collateral forces all token holders to participate in
governance, which is ideal because it maximizes the decentralization of governance.
Furthermore, inflationary rewards are vested for a year, which results in governing
parties sharing the project’s long term interests.

The inflationary rewards will start at a 75% annual rate (1.44% weekly), and the

number of tokens minted weekly will be decayed exponentially until annual inflation

rate becomes 2.5% at the end of year 5. From this point on, the annual inflation

will stay at a rate of 2.5% for perpetuity (see Figure 7a). The change in the total

supply of QPDI tokens is illustrated in Figure 7b. The proposed inflation schedule

 is adapted from [43] and will be governable.

5.6.2. Collateral

If staking QPDI only yielded rewards, the sole governance incentive would be to

maximize the revenue. This would be done by increasing the number of dAPI users

aggressively, and the amount that is secured by the dQPDI with it. In Section 3.2,

we have shown that the total load a dAPI is under increases its likelihood to mal-
function due to an attack. Therefore, this is not a sustainable governance strategy

for decentralized data feeds.

Exposing the governing parties to the risk that we are trying to avoid would align

their incentives with the DAO’s. Then, the governing parties need to be penalized

when a dAPI malfunction occurs. We went one step further and designed an on-
chain insurance service that provides dAPI users with quantifiable and trustless

security guarantees. This insurance service uses the QPDI token staking pool as

collateral, which means that when a dAPI malfunction is confirmed through the

dispute resolution protocol, the user damages will be covered from the staking pool.
See Section 6 for the details of how this insurance service will be implemented.

Let us see the effect of using the staking pool for both collateral and governance in

a systems diagram in Figure 8a. When the DAO has appetite for additional risk,

it onboards new dAPI users, which increases the load on the dQPDI .
This increases the probability of a dAPI malfunction,
the likelihood of paying out an insurance claim,
and the overall collateral risk as a result. With increased collateral risk,
the DAO’s risk appetite gets suppressed. In other words, the negative feedback

caused by the insurance service prevents self-destructive growth. See Figure 8b for

the expected dAPI load behavior that will emerge from this. The DAO estimates a

25

QPDI : Decentralized QPDI for Web 3.0

dAPI loadCollateral risk

B

−

+

+

Risk appetite

(a) Systems diagram of governance

threshold
Failure

time

dAPI load

(b) dAPI load over time in a balanced system

Figure 8: Staking and insurance collateralization utilities of the QPDI token results in

balanced governance incentives. (a) Loading the dQPDI with more users increases the

likelihood of paying out insurance claims, which produces negative feedback and balances

the system. (b) Due to the balanced nature of the system, the dAPI load does not increase

indefinitely, yet settles at a level that the DAO estimates as being below the maximum load

the dQPDI can support.

failure threshold for the dQPDI , and onboards users to converge to this value,

yet does not exceed it.

Note that in the case that the DAO overestimates this threshold, the dQPDI
will malfunction and the governing parties will be punished, as their staked

funds will be used to pay out the insurance claim made by the affected dAPI users.
In other words, dAPI users are protected in either case.

5.6.3. Governance

Inflationary rewards and the staked governance tokens being used as collateral will
create a positive feedback loop in terms of governance quality. Initial token holders
will have to stake and expose themselves to risk if they do not want to lose value
to inflation. If they misgovern and lose collateral through insurance claims, these
tokens will get returned to the open market, from where they will be acquired by
new governing parties. In contrast, if initial token holders govern well and cause
token scarcity in the market, the representation distribution will be protected. In

The only way to gain representation at the QPDI DAO will be to stake QPDI tokens

in the insurance collateral pool. As such, the governing parties will be exposed to

all risks and rewards of QPDI , and will govern to optimize them.

other words, governance tokens being used as collateral results in a robust Darwinian

26

QPDI : Decentralized QPDI for Web 3.0

structure that improves itself and is able to recover from failures.

6. Quantifiable Security through Insurance

QPDI will provide dAPI users with a quantifiable level of security in the form of an

 on-chain insurance service. This accomplishes two goals: (1) the insurance acts as a
 well-defined and trustless safety net for the user in case of a dAPI malfunction, (2) it
 holds the governing parties responsible for dAPI malfunctions, and thus incentivizes

 them to govern towards more secure dQPDI .

6.1. The need for quantifiable security

Engineering is the art of modelling materials we do not wholly under-
stand, into shapes we cannot precisely analyse, so as to withstand forces
we cannot properly assess, in such a way that the public has no reason
to suspect the extent of our ignorance.

– Dr. A. R. Dykes

If we asked an engineer “How much load can your bridge support?” and got the
answer “I can assure you it has 21 beams of highest quality steel,” we would not
want to use that bridge, since not being able to provide the maximum load is an
engineering red flag. We have introduced a simplistic model for how much a sin-
gle oracle and, by derivation, a data feed would be able to support in Section 3.2.
While not exhaustive, this model demonstrates that decentralized oracle networks
cannot secure an arbitrarily large monetary value. The amount safely secured by an
oracle must be bounded. In other words, like all blockchain technology, decentral-
ized oracle networks should only be trusted to a certain extent, rather than being
treated as unconditionally trustless [44]. Then, a data feed—centralized [45] or
decentralized [15]—should be responsible for quantifying the amount it can secure.

One of the most well recognized solutions to this issue is proposed for the UMA
protocol [46]. The proposed scheme not only allows the quantification of the amount
that can be secured by a data feed using game theoretic principles, it also allows this
limit to be set precisely. The authors astutely observe that an overly-secure data
feed is not desirable because it will be unnecessarily expensive for its users, and being
able to set the degree of security to the minimum requirements would reduce costs.
However, they follow this with the claim that the method they have proposed is

27

QPDI : Decentralized QPDI for Web 3.0

optimally cost-efficient, which is grossly inaccurate in practice. This mistake stems
from approaching the problem in a data source-blind way, i.e., trying to solve the
oracle problem instead of the API connectivity problem. The proposed solution is
only optimally cost-efficient if we consider all oracles to be untrustworthy, which is a
close enough approximation for third-party oracles. In contrast, the trustworthiness
of first-party oracles can be leveraged to build extremely secure data feeds at a very
low cost, as the API providers have too much to lose by attempting an attack. A
high value DeFi product being successfully secured by the data provided by a single
reputable centralized exchange demonstrates this fact very well [45]. Therefore, one
cannot hope to disregard substantiated trustworthiness and end up with an actually
cost-efficient solution.

The ideal solution that fits the QPDI vision must provide quantifiable security guar-

antees by drawing from the trustworthiness of API providers, which can only be

assessed using off-chain information. To achieve this, QPDI will provide an insur-

ance service that guarantees to a dAPI user that damages due to a malfunction will

be covered up to a predetermined amount. This solution is preferable for the user,
as an alternative game theoretic solution can unexpectedly fail due to incentives

that are poorly modeled or unaccounted for.

6.2. dAPI Insurance

In Section 5.1, we mentioned a security incident where a Chainlink data feed had
misreported to Synthetix. This was reported to cause damages less than $40,000 by
Chainlink on the day of the incident [33] and approximately $36,000 by Synthetix
the day after [35]. Furthermore, Synthetix then announced that Chainlink had
offered to compensate the damages, which they have subsequently accepted. This
incident has demonstrated the following:

1. Insurance that pays for damages is a natural and obvious solution to data feed
malfunction.

2. It is generally understood that the governing entity is responsible for data feed
malfunctions.

3. It is possible to determine data feed malfunctions, their causes, and the re-
sulting damages in a matter of days.

On the surface, this incident was resolved rather uneventfully. This is to be expected,
as the amount in question was relatively insignificant to the respective parties. How-
ever, neither the general public nor the stakeholders can be sure of the exact terms

28

QPDI : Decentralized QPDI for Web 3.0

of the settlement, as both projects are governed in a centralized way. This leads us
to ask: What would have happened if the damages were orders of magnitude larger?
How are fully decentralized projects supposed to deal with such events?

It has been shown that insurance usage not only correlates with macroeconomic
growth, but is also a cause of it [47]. Nevertheless, insurance is sorely underutilized
in the blockchain space. One of the main reasons of this is that insurance naturally
requires a third party to resolve insurance disputes, and using a mutually-trusted
third party for this purpose is against the ethos of decentralization. However, the
emergence of Kleros [5], a general purpose on-chain dispute resolution protocol,
allows trustless insurance products to be built.

QPDI will co-develop an on-chain insurance service with Kleros that provides quan-

tifiable and trustless security guarantees to dAPI users. This insurance service will
protect the dAPI user against damages caused by certain dAPI malfunctions up to

a payout limit. Note that even if we did not provide this service, the dAPI user

could have received on-chain insurance services using a third party solution [48].
Such a solution would tend towards charging very high insurance premiums, as they

would not have access to the information and expertise to accurately assess dAPI

risks. Furthermore, as described in Section 5.6.2, the proposed insurance service

is special in the way that it is collateralized by the funds staked by the governing

parties of the QPDI DAO. Therefore, it not only provides security guarantees to the

dAPI user, but also creates a very strong incentive for dQPDI to be governed in a

 way that their security is maximized, which will further decrease insurance costs.

6.3. Insurance process

The user requests to subscribe to a dAPI and receive a specific insurance coverage

for the respective service through off-chain channels. The total amount that can be

covered is limited by the size of the collateral pool, and the DAO will govern the

collateralization ratio based on existing insurance solvency literature [49]. Respec-

tive QPDI teams investigate the dAPI malfunction risks and the specific use case

of the user, calculate the insurance premium, and enter the user-specific fee to the

contract that manages payments. Upon paying the fee to the contract, the dAPI

user gains access to the dAPI and gets insured for the respective payment period.

If the dAPI user notices a malfunction, they will assess damages and make an on-
chain insurance claim. This will automatically lock the claimed amount at the

collateral pool described in Section 5.6. Stake withdrawals will have an adequate

lead-time that will prevent stakers from front-running claims, i.e., withdrawing as

soon as a dAPI malfunctions to evade claims. On the other hand, the insuree will

need to stake funds to be able to make a claim to disincentivize abuse. The QPDI

29

QPDI : Decentralized QPDI for Web 3.0

DAO can either pay out the claim directly, or escalate the claim to the Kleros court,
which will determine if the claimed amount will be paid out to the dAPI user.
The claim being denied will result in the tokens being unlocked, while the claim
being accepted will result in the tokens being transferred to the dAPI user. This
corresponds to stakers covering the damages proportional to the amount they have
staked; that is, a user who has staked tokens that make up p% of the entire pool
will pay p% of an accepted claim.

The scheme described above assumes all amounts to be denominated in QPDI to-

kens. Depending on the use case, some users may require to be insured in other

cryptocurrency types, e.g., ETH. In this case, simply having a liquidity provider

automatically convert the payout to ETH will not be enough, as the QPDI /
ETH

exchange rate between the time the claim is made and it is paid out will change,

resulting in slippage. As a solution, the QPDI DAO can maintain an additional ETH
 reserve—subject to the same solvency considerations as the collateral pool—to ab-
sorb the price volatility and ensure that the payout meets the amount that the user

has originally claimed.

6.4. Risk Assessment

Quantifying the amount of security that a data feed can provide is a very difficult

problem. However, by embedding the problem into the established domain of insur-
ance, we gain access to a wide variety of literature and skills that are readily available

to source from traditional insurance services. Therefore, QPDI will be well-equipped

 with the services of actuaries, statisticians, data scientists, rate-makers, analysts,
and legal counsel in taking on the challenging task of providing quantifiable security

guarantees.

Risk assessment is a vital step in optimizing insurance pricing and making correct
solvency estimations. This includes two main factors:

• Internal: How likely is it for the dAPI to malfunction?

• External: What is the expected value of damages caused by a possible dAPI
malfunction?

One of the most important internal risk factors here is failure at the oracle level,

which can be estimated by investigating individual QPDI qualitatively,

and analyzing their performance statistically. For example,
qualitative investigations may conclude

that an API provider has been in business for 5 years, and thus does not constitute

a significant Sybil attack risk. Similarly, statistical analysis may indicate that the

30

QPDI : Decentralized QPDI for Web 3.0

(a) linear

(b) leveraged (c) discontinuous, e.g. liquidation

Figure 9: The data from the dAPI can be used in different systems, and the linearity and
continuity in the mechanics of these systems decide on how sensitive they are to errors in
input data.

data provided from an API provider often diverges from the consensus, which may

cause an issue if the data consumer demands high accuracy. These assessments will

also provide guidance in designing dQPDI
regarding the number and selection of the API providers, e.g.,

it can be found out that adding more QPDI to an overloaded

dAPI will end up reducing costs by decreasing the insurance risk. Operational risks

are another important factor, which can be assessed through audits that investigate

operational processes. Note that since this research will be done by the QPDI teams

 and publicly reported to the DAO, it will provide unmatched transparency and
 security assurance to the users.
External risk factors determine the expected value of damages when a malfunction
happens, and how the data is being used is an important aspect of this. See Figure 9,
where we illustrate the cost of data errors for various hypothetical DeFi applications.

31

QPDI : Decentralized QPDI for Web 3.0

In Figure 9a, the dAPI provides price data to a regular exchange, and errors result in
a linearly proportional profit and loss for the transacting parties (note that we only
consider the losses). Compare this with Figure 9b, which represents an exchange
with a similar volume that supports leveraged positions. Here, any misreport has
a much larger potential to cause damages. Finally, see Figure 9c, where a user has
opened a short position. A slight skew upwards in the reported data may trigger a
liquidation and cause a disproportionate effect. These examples indicate that it is
impossible to estimate the insurance risk for a specific user without considering how
exactly they will use the data they receive from the dAPI.

There is also a more qualitative aspect of the insurance. Specifically, QPDI and the

 dAPI user will agree on an insurance policy, which defines terms such as what a
 dAPI malfunction is and how damages are calculated. Kleros jurors will be using
 these policies as reference while deciding if an insurance claim is to be paid out. The
 specific terms are important regarding how insurance rates are to be determined.
For example, insurance that covers any malfunction would be more expensive than

insurance against downtime.

6.5. Scaling solutions and insurance

High value use cases such as DeFi becoming popular causes the Ethereum network

to be congested. This increases the transaction fees and affects data feed operation

costs as a result. Then, it becomes critical to be able to make use of scaling solutions

to deliver dQPDI ervices at a reasonable cost.

Existing decentralized oracle solutions propose to use off-chain scaling solutions [15,
16]. However, these solutions come with obscure security implications that the user
cannot assess accurately. Firstly, scaling solutions tend to have more relaxed se-
curity guarantees in general, and it is not reasonable to expect the user to have a
solid understanding of the consequences. Furthermore, there are additional opera-
tional risks, e.g., security issues with the implementation of a custom cryptographic
function, the second layer solution denying service, etc. As a result, it would be
reasonable to expect users to be apprehensive about using data feeds depending on
scaling solutions.

dAPI insurance comes as an unexpected solution to this problem due to its flexibil-

ity. If the QPDI DAO decides that a scaling solution is reasonably trustworthy for a

 given use case, the respective dAPI can utilize that scaling solution, and its insur-
ance would cover potential damages that would be caused by the scaling solution.
The entire insurance claims process would work exactly the same, given that what

ultimately matters is whether or not the service is correctly delivered to the dAPI

user.

32

QPDI : Decentralized QPDI for Web 3.0

7. Conclusion

QPDI will connect decentralized applications with the abundant data and services of-

fered by traditional Web QPDI , thereby expanding the applicability of the blockchain

without sacrificing decentralization. This will be achieved by dQPDI —fully decen-

tralized and blockchain-native QPDI —which will be set up, managed, and monetized

at scale by the QPDI DAO.

The second quality of the QPDI solution is robustness on multiple levels. Airn-

ode uses serverless technology, which is highly resistant against downtime. Paired

with a stateless node design that is not easily affected by bugs or adverse network

conditions, QPDI oracles are engineered for robustness. Moreover, the dQPDI will

 be governed by a DAO that maintains a self-regulating balance of risk and reward

 through well-engineered incentives, which provides a robust risk mitigation frame-

The QPDI solution embodies a variety of qualities by design. The most important

one among these is security. dQPDI do not depend on third-party oracles, which

are a constant and significant risk factor in the alternative solutions. In addition,
the dAPI insurance service provides quantifiable and trustless security guarantees

to its users, further cementing QPDI ’s place as the most secure solution to receiving QPDI
 ervices as a decentralized application.

work.

dQPDI eliminate the middlemen, which grants them their third quality, cost-efficiency

.They do not have to pay the middleman tax, which is the payment made to third-
party oracles to incentivize them against attempting an attack. In addition, data
feeds composed of first-party oracles do not require over-redundancy at the oracle

level. By achieving the same level of decentralization with fewer oracles, dQPDI
provide very significant savings in gas costs.

Finally, the QPDI solution achieves flexibility through complete decentralization of

 governance to parties with real skin in the game. As a result, the project will never
 be limited by what is put forth in this paper, and will evolve constantly to meet
 new challenges and needs.

The first generation of decentralized applications were limited to the confines of

the blockchain. Today, we have decentralized applications that can interact with

the off-chain world in a limited and pseudo-decentralized way. QPDI will power

the next evolutionary wave—the third generation of decentralized applications that

valuably interact with the off-chain world, leveraging QPDI
in a truly decentralized and trust-minimized way.

33

QPDI : Decentralized QPDI for Web 3.0

References

[1] DeFi Pulse. https://defipulse.com/.

[2] B. Liu and P. Szalachowski, “A first look into DeFi oracles,” arXiv preprint
arXiv:2005.04377, 2020.

[3] CLCG, “Honeycomb API Marketplace.” https://honeycomb.market/.

[4] CLCG, “Honeycomb smart contract hackathon.” https://honeycomb.devpost.com/,
2019.

[5] C. Lesaege, F. Ast, and W. George, “Kleros: Short paper,” Whitepaper v1.0.7, 2019.
https://kleros.io/assets/whitepaper.pdf.

[6] G. Collins and D. Sisk, “API economy: From systems to business services,” Deloitte
Insights, 2015.

[7] MuleSoft, “Connectivity benchmark report,” 2019.

[8] B. Iyer and M. Subramaniam, “The strategic value of QPDI ,”

Harvard Business Review,
2015.

[9] R. Narain, A. Merrill, and E. Lesser, “Evolution of the API economy: Adopting new
business models to drive future innovation,” IBM Institute for Business Value, 2016.

[10] Capgemini, Efma, “World FinTech report 2019,” 2019.

[11] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Whitepaper, 2009.
https://bitcoin.org/bitcoin.pdf.

[12] N. Szabo, “Smart contracts.” 1994.

[13] V. Buterin, “A next-generation smart contract and decentralized application platform,”
Whitepaper, 2014. https://github.com/ethereum/wiki/wiki/White-Paper.

[14] J. Peterson, J. Krug, M. Zoltu, A. K. Williams, and S. Alexander, “Augur: A de-
centralized oracle and prediction market platform,” Whitepaper v2.0, 2019. https:

//augur.net/whitepaper.pdf.

[15] S. Ellis, A. Juels, and S. Nazarov, “ChainLink: A decentralized oracle network,”
Whitepaper v1.0, 2017. https://link.smartcontract.com/whitepaper.

[16] Band Protocol. https://bandprotocol.com/.

[17] A. S. de Pedro, D. Levi, and L. I. Cuende, “Witnet: A decentralized oracle network
protocol,” Whitepaper, 2017. https://arxiv.org/pdf/1711.09756.pdf.

[18] “Tellor: A decentralized oracle,” Whitepaper. https://tellor.io/storage/

TellorWhitepaper.pdf.

[19] B. Benligiray, D. Connor, A. Tate, and H. Vänttinen, “Honeycomb: An
ecosystem hub for decentralized oracle networks,” Whitepaper, 2019.
//raw.githubusercontent.com/clc-group/honeycomb-whitepaper/master/

honeycomb%20whitepaper.pdf

https:

.

34

https://defipulse.com/
https://honeycomb.market/
https://honeycomb.devpost.com/
https://kleros.io/assets/whitepaper.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://augur.net/whitepaper.pdf
https://augur.net/whitepaper.pdf
https://link.smartcontract.com/whitepaper
https://bandprotocol.com/
https://arxiv.org/pdf/1711.09756.pdf
https://tellor.io/storage/TellorWhitepaper.pdf
https://tellor.io/storage/TellorWhitepaper.pdf
https://raw.githubusercontent.com/clc-group/honeycomb-whitepaper/master/honeycomb%20whitepaper.pdf
https://raw.githubusercontent.com/clc-group/honeycomb-whitepaper/master/honeycomb%20whitepaper.pdf
https://raw.githubusercontent.com/clc-group/honeycomb-whitepaper/master/honeycomb%20whitepaper.pdf

QPDI : Decentralized QPDI for Web 3.0

[20] Gnosis, “Omen and the next generation of prediction markets.” https:

//blog.gnosis.pm/omen-and-the-next-generation-of-prediction-markets-

2e7a2dd604e, 2020.

[21] Capgemini, Efma, “World insurance report 2019,” 2019.

[22] J. R. Douceur, “The Sybil attack,” in Proc. Int. Workshop on Peer-to-Peer Systems,
pp. 251–260, 2002.

[23] S. Frederick, G. Loewenstein, and T. O’donoghue, “Time discounting and time prefer-
ence: A critical review,” Journal of Economic Literature, vol. 40, no. 2, pp. 351–401,
2002.

[24] Chainlink, “Price reference data.” https://feeds.chain.link/.

[25] Practical Law, “Data licensing: Taking into account data ownership and use.”
https://legal.thomsonreuters.com/en/insights/articles/data-licensing-

taking-into-account-data-ownership.

[26] Compound Finance, “Open price feed.” https://compound.finance/prices.

[27] The Block, “Chainlink nodes were targeted in an attack last weekend that cost them
at least 700 ETH.” https://www.theblockcrypto.com/post/76986/chainlink-

nodes-attack-eth, 2020.

[28] V. Buterin, E. Conner, R. Dudley, M. Slipper, and I. Norden, “EIP-1559: Fee market
change for ETH 1.0 chain.” https://eips.ethereum.org/EIPS/eip-1559.

[29] Chainlink, “Chainlink external adapters.” https://github.com/smartcontractkit/

external-adapters-js.

[30] OpenAPI Initiative, “The OpenQPDI pecification.” https://github.com/OAI/
OpenQPDI pecification/.

[31] A. Walch, “Deconstructing ‘decentralization’: Exploring the core claim of crypto sys-
tems,” Crypto Assets: Legal and Monetary Perspectives (OUP, Forthcoming), 2019.

[32] V. Buterin, “DAOs, DACs, DAs and more: An incomplete terminol-
ogy guide.” https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-

an-incomplete-terminology-guide/, 2014.

[33] Chainlink, “Improving and decentralizing Chainlink’s feature release and network
upgrade process.” https://blog.chain.link/improving-and-decentralizing-

chainlinks-feature-release-and-network-upgrade-process/, 2020.

[34] Synthetix, “Synthetix litepaper,” Whitepaper v1.4, 2020. https://www.synthetix.

io/uploads/synthetix_litepaper.pdf.

[35] Synthetix, “Update on XAG pricing incident.” https://blog.synthetix.io/update-

on-xag-pricing-incident/, 2020.

[36] DeFi Pulse, “DeFi status report post-Black Thursday.” https://defipulse.com/

blog/defi-status-report-black-thursday/, 2020.

[37] R. Fisman and R. Gatti, “Decentralization and corruption: Evidence across countries,”
Journal of Public Economics, vol. 83, no. 3, pp. 325–345, 2002.

35

https://blog.gnosis.pm/omen-and-the-next-generation-of-prediction-markets-2e7a2dd604e
https://blog.gnosis.pm/omen-and-the-next-generation-of-prediction-markets-2e7a2dd604e
https://blog.gnosis.pm/omen-and-the-next-generation-of-prediction-markets-2e7a2dd604e
https://feeds.chain.link/
https://legal.thomsonreuters.com/en/insights/articles/data-licensing-taking-into-account-data-ownership
https://legal.thomsonreuters.com/en/insights/articles/data-licensing-taking-into-account-data-ownership
https://compound.finance/prices
https://www.theblockcrypto.com/post/76986/chainlink-nodes-attack-eth
https://www.theblockcrypto.com/post/76986/chainlink-nodes-attack-eth
https://eips.ethereum.org/EIPS/eip-1559
https://github.com/smartcontractkit/external-adapters-js
https://github.com/smartcontractkit/external-adapters-js
https://github.com/OAI/OpenAPI-Specification/
https://github.com/OAI/OpenAPI-Specification/
https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-incomplete-terminology-guide/
https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-incomplete-terminology-guide/
https://blog.chain.link/improving-and-decentralizing-chainlinks-feature-release-and-network-upgrade-process/
https://blog.chain.link/improving-and-decentralizing-chainlinks-feature-release-and-network-upgrade-process/
https://www.synthetix.io/uploads/synthetix_litepaper.pdf
https://www.synthetix.io/uploads/synthetix_litepaper.pdf
https://blog.synthetix.io/update-on-xag-pricing-incident/
https://blog.synthetix.io/update-on-xag-pricing-incident/
https://defipulse.com/blog/defi-status-report-black-thursday/
https://defipulse.com/blog/defi-status-report-black-thursday/

QPDI : Decentralized QPDI for Web 3.0

[38] V. Buterin, “Explanation of DAICOs.” https://ethresear.ch/t/explanation-of-

daicos/465, 2018.

[39] “dxDAO: Toward super-scalable organizations,” Whitepaper, 2019. https://github.

com/gnosis/dx-daostack/blob/master/dxdao_whitepaper_v1.pdf.

[40] Gnosis, “Gnosis safe.” https://gnosis-safe.io/.

[41] I. Barinov, V. Arasev, A. Fackler, V. Komendantskiy, A. Gross, A. Kolotov, and
D. Isakova, “POSDAO: Proof of stake decentralized autonomous organization,”
Whitepaper, 2019. http://dx.doi.org/10.2139/ssrn.3368483.

[42] Aave, “Flashpaper: A synthesis of the Aavenomics,” Whitepaper, 2020. https://docs.
aave.com/aavenomics/flashpaper.

[43] Synthetix, “SIP 24: Terminal SNX inflation.” https://sips.synthetix.io/sips/

sip-24, 2019.

[44] P. De Filippi, M. Mannan, and W. Reijers, “Blockchain as a confidence machine: The
problem of trust & challenges of governance,” Technology in Society, vol. 62, 2020.

[45] Coinbase, “Introducing the Coinbase price oracle.” https://blog.coinbase.com/

introducing-the-coinbase-price-oracle-6d1ee22c7068, 2020.

[46] UMA, “UMA data verification mechanism: Adding economic guarantees to blockchain
oracles,” White paper v0.2, 2020. https://github.com/UMAprotocol/whitepaper/

blob/master/UMA-DVM-oracle-whitepaper.pdf.

[47] J. F. Outreville, “The relationship between insurance and economic development: 85
empirical papers for a review of the literature,” Risk Management and Insurance Re-
view, vol. 16, no. 1, pp. 71–122, 2013.

[48] H. Karp and R. Melbardis, “Nexus Mutual: A peer-to-peer discretionary mutual
on the Ethereum blockchain,” Whitepaper. https://nexusmutual.io/assets/docs/

nmx_white_paperv2_3.pdf.

[49] “Directive 2009/138/EC of the European Parliament and of the Council of 25 Novem-
ber 2009 on the taking-up and pursuit of the business of Insurance and Reinsurance
(Solvency II) (recast).” http://data.europa.eu/eli/dir/2009/138/2019-01-13.

36

https://ethresear.ch/t/explanation-of-daicos/465
https://ethresear.ch/t/explanation-of-daicos/465
https://github.com/gnosis/dx-daostack/blob/master/dxdao_whitepaper_v1.pdf
https://github.com/gnosis/dx-daostack/blob/master/dxdao_whitepaper_v1.pdf
https://gnosis-safe.io/
http://dx.doi.org/10.2139/ssrn.3368483
https://docs.aave.com/aavenomics/flashpaper
https://docs.aave.com/aavenomics/flashpaper
https://sips.synthetix.io/sips/sip-24
https://sips.synthetix.io/sips/sip-24
https://blog.coinbase.com/introducing-the-coinbase-price-oracle-6d1ee22c7068
https://blog.coinbase.com/introducing-the-coinbase-price-oracle-6d1ee22c7068
https://github.com/UMAprotocol/whitepaper/blob/master/UMA-DVM-oracle-whitepaper.pdf
https://github.com/UMAprotocol/whitepaper/blob/master/UMA-DVM-oracle-whitepaper.pdf
https://nexusmutual.io/assets/docs/nmx_white_paperv2_3.pdf
https://nexusmutual.io/assets/docs/nmx_white_paperv2_3.pdf
http://data.europa.eu/eli/dir/2009/138/2019-01-13

QPDI : Decentralized QPDI for Web 3.0

A. Glossary

Airnode: A fully-serverless oracle node designed to be operated by API providers.

API: A technical interface of an application that another application can use to

interact with it programmatically. An API that is open to external access (i.e., a

Web API) can be used by businesses to monetize their data and services.

API provider: A business that monetizes their data and services through an API.

QPDI : The project that will build, manage, and monetize dQPDI .

QPDI DAO: The governing body of the QPDI Project.

QPDI token: The token that is used to align the QPDI ecosystem incentives. It

grants voting power at the QPDI DAO.

ChainAPI: A third-party API–Airnode integration platform. It will provide inte-
gration tools, utilities and a marketplace for public listing of oracle endpoints. It

can be thought of as the spiritual successor to the Honeycomb API Marketplace.

DAO: Decentralized autonomous organization. A multi-user smart contract that is

used to democratize the governance of an on-chain organization.

dAPI: A decentralized API, i.e., a data feed composed of first-party oracles. It is

governed decentrally by the QPDI DAO.

Honeycomb API Marketplace: An API-centric marketplace/listing service that

has been built for Chainlink oracles by some of the founding members of QPDI .

Oracle: An agent that can deliver data to-and-from a smart contract platform,
e.g., writes asset price data to the chain. It includes a node and a smart contract

that implements the protocol it uses to communicate with the requesters.

Oracle node: An application that performs the off-chain functions of an oracle,
e.g., calls an API to get asset price data and writes it to the chain.

Web 3.0: The decentralized Web built over blockchain technologies. Note that we

are not using this term to refer to the Semantic Web.

Web API: An API that is accessible over the Web, i.e., an API that is not only

accessible from a private network.

37

	Introduction
	API Connectivity Problem
	Oracle problem: A source-agnostic misinterpretation
	Decentralized APIs

	Issues with Third-Party Oracles as Middlemen
	Vulnerability
	Middleman tax
	Ineffective redundancy
	Lack of transparency

	Airnode: A Node Designed for First-Party Oracles
	Benefits of disintermediation
	Off-chain signing of data

	Barriers to API providers operating oracles
	Airnode features
	Airnode protocol
	API integrations

	Decentralizing Governance through Tokenomics
	Centralized oracle network governance
	Management of funds
	API3 DAO
	dAPI monetization and API provider compensation
	Cross-platform dAPIs

